MRI in multiple sclerosis

Rohit Bakshi, MD, MA Breakstone Professor of Neurology & Radiology Director, Laboratory for Neuroimaging Research Senior Neurologist, MS Center Brigham & Women's Hospital

Harvard Medical School Boston, MA, USA rbakshi@bwh.harvard.edu

MRI in MS

- Conventional MRI lesions
 - -T2, T1, gad
- Atrophy of the CNS in MS –MRI assessment
- Recent MRI advances in MS

MS T2 Lesions: Pathology

- Non-specific
 - -Demyelination
 - -Remyelination
 - -Inflammation
 - -Edema
 - -Axonal loss
- -Tract degeneration
- Limited sensitivity

Clinical Correlations of T2 Lesions

In cross-sectional studies:

mild correlation with clinical status
 Better longitudinal predictive value for:

- disease progression in established MS
- development of brain atrophy
- conversion from CIS to RRMS
- •Probably a brain reserve/threshold effect

MRI may predict clinical progression in MS

MRI gadolinium enhancement in MS

- Active BBB disruption
- Passage of T cells in to the CNS
- 5–10x more frequent than relapses
- Predictive of relapses, but lessens in SPMS
- Window 2-8 wk; mean 3 wk

Cotton et al., Neurology 2003;60:640-646

Van Walderveen et al. Neurology 1998;50:1282

Bakshi et al., Neurology 2004;63(Suppl 5):S3-S11

Bakshi & Ketonen, Baker/Joynt's Clinical Neurology, 2004

MRI findings in MS Differential diagnosis

- Related inflammatory/demyelination —Devic, Balo
 - -Acute disseminated encephalomyelitis
- Vascular ischemic disease, vasculitis
- Autoimmune/collagen vascular disease
- Aging, perivascular spaces
- Infection, sarcoid
- Trauma, toxin, metabolic

Bakshi & Ketonen, Baker/Joynt's Clinical Neurology, 2004

Markus HS et al., Neurology 2002;59:1134

Bakshi & Ketonen, Baker/Joynt's Clinical Neurology, 2004

Sundgren et al., Neuroradiology 2005;47:576–585

Morgen et al., Semin Arthritis Rheum 2004;34:623-30

Bakshi & Ketonen, Baker/Joynt's Clinical Neurology, 2004

Brain Atrophy in MS MRI over 7 years in an untreated patient

The MS Collaborative Research Group

Regional brain atrophy in MS: 3T MRI Early RRMS vs. normal controls

- Voxel-based morphometry study from 3T MRI scans
- Caudate and thalamus were the only GM structures showing atrophy in MS

The AS method is highly reproducible (n=60)							
	COV = (SD/mean) × 100%						
Method	Intra-Observer	Inter-Observer					
Losseff method C2-3	2.15 %	7.95 %					
AS method C2-3	0.59 %	1.36 %					
AS method C2-C5	0.44 %	1.07 %					
Horsfield et al., Ne	uroimage 2010;69:12	13-23					

	Spinal cord MRI Measures: Volume measures* Lesion measures													
Brain MRI measures:	C2-C3 Cer		vical Thoracic		Whole cord		Cervical		Thoracic		Whole cord			
	,	P	,	P	,	P	,	P	,	P	,	P	,	P
GMF ^a	.307	.189	.302	.196	.234	.320	.229	.331	119	.618	.009	.971	104	.68
WMF	.323	.164	.359	.120	.229	.331	.272	.245	.226	.339	.097	.683	.258	_23
BPF"	365	.113	.375	,103	.272	.245	.285	.224	-,008	.972	.044	.854	.015	.93
GMF = brain gray matter hyperintense lesion volur by intracranial volume (se	r fraction; ne; *spina ee Method	WMF = 1 l cord vol h section).	brain whit uttes are a	e maiter fr sormalizes	raction; III d by numb	PF = glob ser of slice	al brain pa 19 and intr	irenchym acranial v	al fraction; I olume (see !	LLV = B Methods >	rain fluid- ection). ^1	attenuated brain volu	l inversion r mes are nor	naliz

Evolving WM tract damage over 1y

- 25 mildly-disabled MS pts;
 9 normal controls; 3T DTI
- Over 1y: Decreasing FA (yellow-red) in WM tracts (overlaid on the green FA skeleton) in MS vs. NC
- Thalamic volume at baseline linked to on-study decreasing FA in the corpus callosum (p<0.05)

Longitudinal change in MRDSS (n=84)							
MRI:	Baseline	3 years	Change	p-value			
MRDSS	4.8 ± 2.5	5.5 ± 2.3	0.64 ± 0.8	1.5 x10 ⁻¹⁰			
BPF	0.83 ± 0.05	0.82 ± 0.05	-0.01 ± 0.02	8.8 x10⁻⁵			
T2	6.9 ± 5.5	7.2 ± 6.2	0.3 ± 2.6	0.31			
T1/T2	0.15 ± 0.2	0.2 ± 0.2	0.06 ± 0.1	1.6 x10 ⁻⁶			
Key: MRDSS=Magnetic Resonance Disease Severity Scale; BPF=brain parenchymal fraction; T2=T2 hyperintense lesion volume; T1=T1 hypointense lesion volume; values are mean±SD							

Moodie et al., J Neurol Sci 2012;315:49-54

LNR

19

Use of MRI for routine MS care • Brain MRI •T1/T2/FL ax, FL sag, T1-Gd sag/ax

- Spinal cord MRI
 T1/T2-SE sag, T2-SE ax, T1-Gd sag
- For diagnosis and annually in active patients
- More often in CIS
- Less often in stable patients
- •MRS, MTI, DWI not for routine care
- Bakshi et al. Neurology 2004;63(Suppl 5):S3-11; Simon et al. AJNR 2006;27:455-61; Filippi et al. Eur J Neurol 2006,13:313-25

Conclusions

- •MRI is a powerful tool for diagnosing MS
- •MRI is a valuable marker of biologic disease activity and disease severity
- Worsening of MRI findings even if clinically silent probably impacts on long term clinical outcomes
- MRI technology continues to unfold and requires validation

MRI in multiple sclerosis

Rohit Bakshi, MD, MA Breakstone Professor of Neurology & Radiology Director, Laboratory for Neuroimaging Research Senior Neurologist, MS Center Brigham & Women's Hospital Harvard Medical School

Boston, MA, USA rbakshi@bwh.harvard.edu

