Rohit Bakshi, MD, MA
Breakstone Professor of Neurology & Radiology
Director, Laboratory for Neuroimaging Research
Senior Neurologist, MS Center
Brigham & Women’s Hospital
Harvard Medical School
Boston, MA, USA
rbakshi@bwh.harvard.edu

MRI in multiple sclerosis

MRI in MS

- Conventional MRI lesions
 - T2, T1, gad
- Atrophy of the CNS in MS
 - MRI assessment
- Recent MRI advances in MS

Brain lesions – Morphology Matters

- Typical of MS: Oval/ovoid/>5mm
- Ischemia: Punctate/linear/small

Sagittal FLAIR – Morphology Matters

- Typical of MS: Perivenular

Brain Lesions – Location Matters

- Typical of MS

MS T2 Lesions: Pathology

- Non-specific
 - Demyelination
 - Remyelination
 - Inflammation
 - Edema
 - Axonal loss
 - Tract degeneration
- Limited sensitivity
Clinical Correlations of T2 Lesions

- In cross-sectional studies:
 - mild correlation with clinical status
- Better longitudinal predictive value for:
 - disease progression in established MS
 - development of brain atrophy
 - conversion from CIS to RRMS
- Probably a brain reserve/threshold effect

MRI may predict clinical progression in MS

MRI gadolinium enhancement in MS

- Active BBB disruption
- Passage of T cells into the CNS
- 5–10x more frequent than relapses
- Predictive of relapses, but lessens in SPMS
- Window 2-8 wk; mean 3 wk

Cotton et al., Neurology 2003;60:640-646

MS & Gadolinium: Optimization

T1-non T1-gad immediate T1-gad 5-min delay

Gadolinium MRI in MS

The Open Ring Sign

-52 y.o. MS patient in relapse
Evolution of T1-hypointense Lesions

Baseline
T1 non-contrast

T1 post-gadolinium

1 month
2 month

Bakshi et al., NeuroRx 2005;2:277-303

Persistent T1 black holes in MS

baseline
12 months

MRI of acute spinal MS

FSE-T2
T1-gad

Bakshi et al., Neurology 2004;63(Suppl 5):S3-S11

MRI of acute spinal MS

FSE-T2
T1-gad

Bakshi et al., Neurology 2004;63(Suppl 5):S3-S11

Non MS Acute Myelitis

T2

T2

Bakshi et al., Eur J Neuro 1998; 5:35-48

Acute Optic Neuritis
Enhanced fatsuppressed MRI

T1-non
T1-gad

Bakshi & Ketonen, Baker/Joynt's Clinical Neurology, 2004
MRI findings in MS

Differential diagnosis

- Related inflammatory/demyelination
 - Devic, Balo
 - Acute disseminated encephalomyelitis
- Vascular ischemic disease, vasculitis
- Autoimmune/collagen vascular disease
- Aging, perivascular spaces
- Infection, sarcoid
- Trauma, toxin, metabolic

Fatal ADEM: 51 yo W post-URI

Fatal ADEM: 51 yo W post-URI

Cerebral autosomal dominant arteriopathy with subcortical infarcts & leukoencephalopathy (CADASIL)

Benign or MS?

Lupus Cerebritis
Sjögren’s syndrome

Morgen et al., *Semin Arthritis Rheum* 2004;34:623-30

LYME OF THE BRAIN

- Lesions difficult to distinguish from MS

Whipple’s Disease

Duprez et al., *AJNR* 17:1589, 1996

Vitamin B₁₂ deficiency

Pre-Rx

8 wk

4 yr

Stoparčević et al., *Neurology* 1997

Brain atrophy in MS

Neema et al., *Neurotherapeutics* 2007;4:602-617

Brain Atrophy in MS

MRI over 7 years in an untreated patient

The MS Collaborative Research Group
Serial FLAIR-MRI: findings?

3/00
EDSS 1.0
BPF 0.88

9/01
EDSS 4.0
BPF 0.84

Gray vs. white matter atrophy in MS

GM vs. WM Brain Atrophy

Sanfilipo et al., Neuroimage 2005;26:1068–77

Regional brain atrophy in MS: 3T MRI
Early RRMS vs. normal controls

Voxel-based morphometry study from 3T MRI scans
Caudate and thalamus were the only GM structures showing atrophy in MS

Thalamic atrophy related to cognition in MS

Houtchens et al., Neurology 2007;69:1213-23
Comparison of the reconstructed brain cortical surface. Significant thinning (< 2 mm) is shown in green, while red represents cortical areas > 2 mm. Marked cortical thinning is seen in various areas including the sensorimotor cortex (arrow) in MS.

The AS method is highly reproducible (n=60)

\[
\text{COV} = \left(\frac{\text{SD}}{\text{mean}} \right) \times 100\%
\]

<table>
<thead>
<tr>
<th>Method</th>
<th>Intra-Observer</th>
<th>Inter-Observer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Losseff method C2-3</td>
<td>2.15 %</td>
<td>7.95 %</td>
</tr>
<tr>
<td>AS method C2-3</td>
<td>0.59 %</td>
<td>1.36 %</td>
</tr>
<tr>
<td>AS method C2-C5</td>
<td>0.44 %</td>
<td>1.07 %</td>
</tr>
</tbody>
</table>

Spinal cord atrophy in SP MS

\[p < 0.001^* \]
\[(*\text{SP vs. NC or RR}) \]

<table>
<thead>
<tr>
<th>Normal controls</th>
<th>RR</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean C2-C5 normalized area (mm²)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Whole spinal cord volume

Operator time = 5 minutes

Kim et al. Eur J Radiol (in revision)

Uncoupling of brain & cord MS damage

<table>
<thead>
<tr>
<th>Spinal cord MRI Measures:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume measures*</td>
</tr>
<tr>
<td>Lesion measures</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>C2-C3</td>
</tr>
<tr>
<td>Caudal</td>
</tr>
<tr>
<td>Thoracic</td>
</tr>
<tr>
<td>Whole cord</td>
</tr>
<tr>
<td>Caudal</td>
</tr>
<tr>
<td>Thoracic</td>
</tr>
<tr>
<td>Whole cord</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intra-Observer</th>
<th>Inter-Observer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2-C3</td>
<td>r</td>
</tr>
<tr>
<td>Caudal</td>
<td></td>
</tr>
<tr>
<td>Thoracic</td>
<td></td>
</tr>
<tr>
<td>Whole cord</td>
<td></td>
</tr>
<tr>
<td>Caudal</td>
<td></td>
</tr>
<tr>
<td>Thoracic</td>
<td></td>
</tr>
<tr>
<td>Whole cord</td>
<td></td>
</tr>
</tbody>
</table>

*SP = status post; RR = relapsing-remitting; RR = relapsing-remitting; RR = relapsing-remitting; RR = relapsing-remitting.
Gray matter hypometabolism in MS

- MS (n=25) vs. NL
- 9% whole brain hypometabolism
- Across all 20 ROIs
 - Cerebral cortex
 - Basal ganglia
 - Thalamus
- Range 3%-18%

Bakshi et al., J Neuroimaging 1998; 8:228-234

Cortical Lesions in MS

- FLAIR
- T2WI

Bakshi et al., Arch Neurol, 2001; 58:742

Double Inversion Recovery MRI

Cortical lesions in MS

- T2
- FLAIR
- DIR

Guerts et al., Radiology 2005; 236:254–260

Subtraction Imaging

Baseline Follow-up Subtraction

Duan et al., AJNR 2008; 29:340-6

MS Cortical lesions: Neuropathology

- Type I
 - WM + Cortex
- Type II
 - Cortex, perivascular
- Type III/IV
 - Pial/subpial

Peterson et al., Ann Neurol 2001; 50:389–400

- Orange=cortical plaque
- Green=WM plaque
- Blue=deep GM plaque

Kutzelnigg et al., Brain 2005; 128:2705–2712
T2 hypointensity in gray matter

Bakshi et al., Arch Neurol 2002;59:62-68

T2 hypointensity and disability

Follow-up scan: T2 intensity putamen 0.51; thalamus 0.48
Follow-up scan: T2 intensity putamen 0.42; thalamus 0.44

Neema et al., J Neuroimaging 2009;19:3-8

T2 hypointensity and disability

46 y.o. stable MS
49 y.o. progressive MS

EDSS 2 ➔ 1.5 (3.2y)
Follow-up scan: T2 intensity putamen 0.51; thalamus 0.48

EDSS 1 ➔ 3.5 (3.5y)
Follow-up scan: T2 intensity putamen 0.42; thalamus 0.44

Neema et al., J Neuroimaging 2009;19:3-8

MRI T1 shortening in MS lesions

• Cause?
 • Iron or other metal
 • Calcium
 • Melanin
 • Free radicals
 • Lipid-laden macrophages
 • Proteinaceous substance

Janardhan et al., Radiology 2007;244:823-31

MRI T1 shortening in MS lesions

• Cause?
 • Iron or other metal
 • Calcium
 • Melanin
 • Free radicals
 • Lipid-laden macrophages
 • Proteinaceous substance

Janardhan et al., Radiology 2007;244:823-31

Thalamic atrophy is related to WM damage in MS

DGM area	WM region	P-value
Left thalamus | Central peduncle | 0.01
Right caudate | External capsule | 0.01
Right thalamus | Posterior corona radiata | 0.02
Right thalamus | External capsule | 0.04
Right thalamus | Cingulum | 0.01
Right thalamus | Superior longitudinal fasciculus | 0.03

AAN 2013

Evolution of WM tract damage over 1y

• 25 mildly-disabled MS pts; 9 normal controls; 3T DTI
• Over 1y: Decreasing FA (yellow-red) in WM tracts (overlaid on the green FA skeleton) in MS vs. NC
• Thalamic volume at baseline linked to on-study decreasing FA in the corpus callosum (p<0.05)

AAN 2013

AAN 2013
Longitudinal change in MRDSS (n=84)

<table>
<thead>
<tr>
<th>MRI:</th>
<th>Baseline</th>
<th>3 years</th>
<th>Change</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRDSS</td>
<td>4.8 ± 2.5</td>
<td>5.5 ± 2.3</td>
<td>0.64 ± 0.8</td>
<td>1.5 x 10^{-10}</td>
</tr>
<tr>
<td>BPF</td>
<td>0.83 ± 0.05</td>
<td>0.82 ± 0.05</td>
<td>-0.01 ± 0.02</td>
<td>8.8 x 10^{-5}</td>
</tr>
<tr>
<td>T2</td>
<td>6.9 ± 5.5</td>
<td>7.2 ± 6.2</td>
<td>0.3 ± 2.6</td>
<td>0.31</td>
</tr>
<tr>
<td>T1/T2</td>
<td>0.15 ± 0.2</td>
<td>0.2 ± 0.2</td>
<td>0.06 ± 0.1</td>
<td>1.6 x 10^{-6}</td>
</tr>
</tbody>
</table>

Key: MRDSS=Magnetic Resonance Disease Severity Scale; BPF=brain parenchymal fraction; T2=T2 hyperintense lesion volume; T1=T1 hypointense lesion volume; values are mean±SD

MRI-defined phenotypes in MS

- Type I (low lesions/ mild atrophy)
- Type II (high lesions/ mild atrophy)
- Type III (low lesions/ high atrophy)
- Type IV (high lesions/ high atrophy)

The majority of patients (phenotypes I, II and III) showed clinical-MRI paradox & dissociation between lesions and brain atrophy

MS brain hyperintensities: 1.5T vs. 3T

MS brain hyperintensities: 1.5T vs. 3T

<table>
<thead>
<tr>
<th>Cognitive test</th>
<th>1.5T FLAIR</th>
<th>3T FLAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASAT Time</td>
<td>-0.37</td>
<td>0.09</td>
</tr>
<tr>
<td>COWAT Time</td>
<td>-0.28</td>
<td>0.21</td>
</tr>
<tr>
<td>BVMT TL</td>
<td>-0.40</td>
<td>0.06</td>
</tr>
<tr>
<td>BVMT TL</td>
<td>-0.41</td>
<td>0.06</td>
</tr>
<tr>
<td>FLO</td>
<td>-0.31</td>
<td>0.41</td>
</tr>
<tr>
<td>SDMT</td>
<td>-0.49</td>
<td>0.02*</td>
</tr>
<tr>
<td>CVLT TL</td>
<td>-0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>CVLT TL</td>
<td>-0.34</td>
<td>0.03*</td>
</tr>
<tr>
<td>DKEFS</td>
<td>-0.26</td>
<td>0.42</td>
</tr>
<tr>
<td>DKEFS DR</td>
<td>-0.42</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Key: r = Spearman partial correlation coefficient controlling for age and depression. FLAIR = Fluid-attenuated inversion recovery/hyperintense lesion volume; PASAT=Paired Auditory Serial Addition Test; 2 and 3 second delay; COWAT=Controlled Oral Word Association Test; BVMT=Boston Visual Memory Test (BVRT), FLO=Digit Symbol Digit Modalities Test; CVLT=California Verbal Learning Test (TL=total recall, DR=delayed recall), DKEFS=Delayed Recalls, DKEFS=Delay Kaplan McComas test (CS=total confirmed correct recall, DS=total confirmed correct delay), *indicates p<.05 statistical significance.
Detecting MS Spinal Cord Lesions: 1.5T vs. 3T

MS Lesions: 7T

Dr. F. Bagnato

MS Lesions: 8T

Kottil Rommohan et al.

Use of MRI for routine MS care

• Brain MRI
 • T1/T2/FL ax, FL sag, T1-Gd sag/ax
• Spinal cord MRI
 • T1/T2-SE sag, T2-SE ax, T1-Gd sag
• For diagnosis and annually in active patients
• More often in CIS
• Less often in stable patients
• MRS, MTI, DWI not for routine care

Conclusions

• MRI is a powerful tool for diagnosing MS
• MRI is a valuable marker of biologic disease activity and disease severity
• Worsening of MRI findings even if clinically silent probably impacts on long term clinical outcomes
• MRI technology continues to unfold and requires validation

MRI in multiple sclerosis

Rohit Bakshi, MD, MA
Breakstone Professor of Neurology & Radiology
Director, Laboratory for Neuroimaging Research
Senior Neurologist, MS Center
Brigham & Women’s Hospital
Harvard Medical School
Boston, MA, USA
rbakshi@bwh.harvard.edu