Is MRI helpful in guiding acute stroke therapies?

Brett Cucchiara, MD Associate Professor of Neurology University of Pennsylvania

Compared to what? Which therapies? Which patients?

- MRI vs. non-contrast HCT vs CTA/CTP
- IV tPA, mechanical thrombectomy
- Clinical presentation
 - Age, risk factors
 - Stroke severity
 - Anterior vs. posterior circulation suspected

Everyone knows MRI is better than CT...for diagnosis

CT vs. MRI for stroke diagnosis

Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison

Julio A Chalela, Chelsea S Kidwell, Lauren M Nentwich, Marie Luby, John A Butman, Andrew M Demchuk, Michael D Hill, Nicholas Patronas, Lawrence Latour, Steven Warach

Summarv

Background Although the use of magnetic resonance imaging (MRI) for the diagnosis of acute stroke is increasing, Lancet 2007; 369: 293-98 this method has not proved more effective than computed tomography (CT) in the emergency setting. We aimed to See Comment page 252 prospectively compare CT and MRI for emergency diagnosis of acute stroke.

Medical University of South Carolina, Charleston, SC, USA (I A Chalela MD): Georgetown University, Washington Hospital Center, Washington DC, USA (C S Kidwell MD); Boston Medical Center, Boston MA, USA (L M Nentwich MD);

Methods We did a single-centre, prospective, blind comparison of non-contrast CT and MRI (with diffusion-weighted and susceptibility weighted images) in a consecutive series of patients referred for emergency assessment of suspected acute stroke. Scans were independently interpreted by four experts, who were unaware of clinical information, MRI-CT pairings, and follow-up imaging.

Results 356 patients, 217 of whom had a final clinical diagnosis of acute stroke, were assessed. MRI detected acute Neurological Disorders and stroke (ischaemic or haemorrhagic), acute ischaemic stroke, and chronic haemorrhage more frequently than did CT Stroke. National Institutes of (p<0.0001, for all comparisons). MRI was similar to CT for the detection of acute intracranial haemorrhage. MRI detected acute ischaemic stroke in 164 of 356 patients (46%; 95% CI 41–51%), compared with CT in 35 of 356 patients (10%; 7–14%). In the subset of patients scanned within 3 h of symptom onset, MRI detected acute ischaemic stroke in 41 of 90 patients (46%; 35-56%); CT in 6 of 90 (7%; 3-14%). Relative to the final clinical diagnosis, MRI had a Center, Bethesda, MD, USA sensitivity of 83% (181 of 217; 78-88%) and CT of 26% (56 of 217; 20-32%) for the diagnosis of any acute stroke.

Interpretation MRI is better than CT for detection of acute ischaemia, and can detect acute and chronic haemorrhage; therefore it should be the preferred test for accurate diagnosis of patients with suspected acute stroke. Because our patient sample encompassed the range of disease that is likely to be encountered in emergency cases of suspected Dr Steven Wards, Section on stroke, our results are directly applicable to clinical practice.

Health, Bethesda, MD, USA (M Luby MS. L Latour PhD. S Warach MD); National (I A Butman MD, N Patronas MD); and University

National Institute of

of Calgary, Alberta, Canada (A M Demchuk MD, M D Hill MD) Correspondence to:

Stroke Diagnostics and Therapeutics, National Institute

Chalela J, Lancet 2007

	n	Acute stroke		Acute ischaemic	stroke
		СТ	MRI	СТ	MRI
Sensitivity					
All	356	26% (20–32)	83% (78–88)	16% (12–23)	83% (77-88)
>12 h	135	22% (14–33)	91% (82–96)	16% (9–27)	92% (83–97)
3–12 h	131	29% (19–41)	81% (70-89)	20% (12-33)	81% (69–90)
<3 h	90	27% (17–40)	76% (64–86)	12% (5–24)	73% (59–84)
Specificity					
All	356	98% (93–99)	97% (92–99)	98% (94–99)	96% (92–99)
>12 h	135	98% (89–100)	96% (86–99)	98% (90–100)	97% (88–99)
3–12 h	131	97% (87–99)	98% (90–100)	96% (87–99)	99% (91–100)
<3 h	90	100% (85–100)	96% (79–100)	100% (89–100)	92% (78–98)

Data in parentheses are 95% Cl.

Table 4: Sensitivity and specificity of blinded imaging diagnosis by time from onset to scan

MRI: The Dark Side

 \wedge

WARNING: Certain implants, devices, or objects may be hazardous to you and/or may interfere with the MR procedure (i.e., MRI, MR angiography, functional MRI, MR spectroscopy). <u>Do not enter</u> the MR system room or MR environment if you have any question or concern regarding an implant, device, or object. Consult the MRI Technologist or Radiologist BEFORE entering the MR system room. **The MR system magnet is ALWAYS on**.

Please indicate if you have any of the following:

Yes	No	Aneurysm clip(s)
Yes	No	Cardiac pacemaker
Yes	No	Implanted cardioverter defibrillator (ICD)
Yes	No	Electronic implant or device
Yes	No	Magnetically-activated implant or device
Yes	No	Neurostimulation system
Yes	No	Spinal cord stimulator
Yes	No	Internal electrodes or wires
Yes	No	Bone growth/bone fusion stimulator
Yes	No	Cochlear, otologic, or other ear implant
Yes	No	Insulin or other infusion pump
Yes	No	Implanted drug infusion device
Yes	No	Any type of prosthesis (eye, penile, etc.)
Yes	No	Heart valve prosthesis
Yes	No	Eyelid spring or wire
Yes	No	Artificial or prosthetic limb
Yes	No	Metallic stent, filter, or coil
Yes	No	Shunt (spinal or intraventricular)
Yes	No	Vascular access port and/or catheter
Yes	No	Radiation seeds or implants
Yes	No	Swan-Ganz or thermodilution catheter
Yes	No	Medication patch (Nicotine, Nitroglycerine)
Yes	No	Any metallic fragment or foreign body
Yes	No	Wire mesh implant
Yes	No	Tissue expander (e.g., breast)
Yes	No	Surgical staples, clips, or metallic sutures
Yes	No	Joint replacement (hip, knee, etc.)
Yes	No	Bone/joint pin, screw, nail, wire, plate, etc.
Yes	No	IUD, diaphragm, or pessary
Yes	No	Dentures or partial plates
Yes	No	Tattoo or permanent makeup
Yes	No	Body piercing jewelry
Yes	No	Hearing aid
		(Remove before entering MR system room)
Yes	No	Other implant
Yes	No	Breathing problem or motion disorder
Yes	No	Claustrophobia

Please mark on the figure(s) below the location of any implant or metal inside of or on your body.

M IMPORTANT INSTRUCTIONS

Before entering the MR environment or MR system room, you must remove <u>all</u> metallic objects including hearing aids, dentures, partial plates, keys, beeper, cell phone, eyeglasses, hair pins, barrettes, jewelry, body piercing jewelry, watch, safety pins, paperclips, money clip, credit cards, bank cards, magnetic strip cards, coins, pens, pocket knife, nail clipper, tools, clothing with metal fasteners, & clothing with metallic threads.

Please consult the MRI Technologist or Radiologist if you have any questions or concerns BEFORE you enter the MR system room.

NOTE: You may be advised or required to wear earplugs or other hearing protection during the MR procedure to prevent possible problems or hazards related to acoustic noise.

I attest that the above information is correct to the best of my knowledge. I read and understand the contents of this form and had the opportunity to ask questions regarding the information on this form and regarding the MR procedure that I am about to undergo.

Signature

Signature of Person Completing Form:

Date ___/ __/

CT vs. MRI for diagnosis

- Pre-test probability of stroke is critical
 - Patient features: age, risk factors, stroke severity
- High pre-test probability, normal CT = treat as stroke
 - CTA improves diagnostic certainty, and is necessary when thrombectomy is a consideration
- Low pre-test probability, normal CT = ??? what to do – MRI has a role

Case example – 76 year old man

Selection for IV tPA: CT vs. MRI

Time is brain: faster tPA is better

Emberson J, Lancet 2015

Figure 1: Effect of timing of alteplase treatment on good stroke outcome (mRS 0–1)

MRI is slower than CT

- SMART study NIH MRI stroke group
- Highly organized acute stroke MRI pathway for all eligible patients
- Protocol includes limited MR brain, MRA brain, PWI
- Reported QI process to speed up imaging
- 157 tPA patients 2012-2013, 135 screened with MRI

MRI delays tPA compared to CT

Table 2 Changes in SMART metrics with the QI process

Characteristic	1st half of 2012	2nd half of 2012	1st half of 2013	2nd half of 2013	p Value
No. of patients treated with IV tPA (% of patients evaluated)	23 (9)	27 (12.2)	46 (16.0)	39 (12.8)	0.11
Patients with DTN time ≤60 min, %	13.0	11.1	28.2	61.5	0.00001ª
Door-to-stroke team paging time, min ^b	6 (3-18)	12 (7-21.5)	6 (5-11)	3 (0-8.5)	0.001 ^a
Door-to-MRI start time, min ^b	49 (39-61.5)	52 (40.5-60)	44 (31.2-57)	24 (16.5-37)	<0.0001ª
MRI-to-needle time, min ^b	40 (29.5-52.5)	31 (23.5-39)	33.5 (21.7-40.7)	30.5 (25-38)	0.13
Door-to-needle time, min ^b	93 (77-103)	82 (71-92.5)	71 (58-92)	55 (46.5-76.5)	<0.0001ª
Last seen normal-to-needle time, min ^b	166 (150-195.5)	160 (114-219)	141.5 (109.7-191.7)	140 (96-201)	0.18

Compare to Helsinki model times: Door direct to CT <5 min, median CT to needle times <20-30 min

Compare to Coverdell registry: DTN<60 min achieved in 66% of patients, DTN <45 min in 40%

(Tong X, Circ Cardiovasc Qual Outcomes, 2018)

MRI for patient selection for tPA: WAKE-UP trial

The N]	EW ENGLA	AND
JOURN	AL of MED	ICINE
ESTABLISHED IN 1812	AUGUST 16, 2018	VOL. 379 NO. 7
RI-Guided Thromboly	sis for Stroke with Ur	nknown Time of On
Thomalla, C.Z. Simonsen, F. Boutitie	, G. Andersen, Y. Berthezene, B. Chen	g, B. Cheripelli, TH. Cho, F. Fazel
J. Fiehler, I. Ford, I. Galinovic, S. G	ellissen, A. Golsari, J. Gregori, M. Gün	ther, J. Guibernau, K.G. Häusler,
M. Hennerici, A. Kemmling, J. Marst	rand, B. Modrau, L. Neeb, N. Perez de	la Ossa, J. Puig, P. Ringleb, P. Roy
Scheel, W. Schonewille, J. Serena, S. Su	maert, K. Villringer, A. Wouters, V. Thi	js, M. Ebinger, M. Endres, J.B. Fieb

WAKE-UP Trial: MRI guided tPA

- Acute ischemic stroke and unknown time of onset
 - MRI used to select patients
 - Lesion on DWI but not FLAIR
- Excluded thrombectomy
- Randomized to tPA or placebo

WAKE-UP Trial: Results

- Stopped early due to lack of funding
- N=503
- Median NIHSS=6
- Excellent outcome:
 - 53% tPA vs. 42% placebo, p=0.02
- Safety concerns:
 - Death 4.1% vs 1.2%, p=0.07
 - sICH 2.0% vs. 0.4%, p=0.15

Selection for mechanical thrombectomy: CT vs. MRI

Mechanical thrombectomy (MT)

- Standard of care for acute major stroke with large vessel occlusion (LVO) within 6 hours of onset
- Therapeutic benefit HUGE (NNT=2-3)
- The field is moving towards asking who SHOULDN'T be treated, instead of who SHOULD be treated

What you need to proceed with MT

1) A large vessel that is occluded

2) An infarct core that is not gigantic

- What does "gigantic" mean? Moving target...
- Measured with ASPECTS, DWI MRI, or CTP
- 3) Some penumbral brain tissue that is salvageable
 - Presumed in patients < 6 h from onset
 OR
 - Perfusion imaging showing mismatch (i.e. core smaller than perfusion defect) in late time window

Mechanical thrombectomy: AHA guidelines 2018

3.7. Mechanical Thrombectomy (Continued)	COR	LOE	New, Revised, or Unchanged
3. Patients should receive mechanical thrombectomy with a stent retriever if they meet all the following criteria: (1) prestroke mRS score of 0 to 1; (2) causative occlusion of the internal carotid artery or MCA segment 1 (M1); (3) age \geq 18 years; (4) NIHSS score of \geq 6; (5) ASPECTS of \geq 6; and (6) treatment can be initiated (groin puncture) within 6 hours of symptom onset.	I	A	Recommendation revised from 2015 Endovascular.
Results from 6 recent randomized trials of mechanical thrombectomy using devices (MR CLEAN, SWIFT PRIME, EXTEND-IA, ESCAPE, REVASCAT, THRAC recommendations for a defined group of patients as described in the 2015 g level analysis from 5 of these studies reported by the HERMES collaboration subgroup of 188 patients not treated with IV alteplase (cOR, 2.43; 95% Cl, 1 with IV alteplase has been removed from the prior recommendation. The HE	See Tables XXIII and XLI in online Data Supplement 1.		

Time is brain: faster thrombectomy is better

Saver J, JAMA 2016

MRA is slower than CTA

Time Metrics	Overall Patients	CTA Group (N=273)	MRI Group (N=758)	P Value				
Time metrics from onset (last well seen)								
OTA	94 (44–178)	85 (37–159)	98 (47–184)	0.004				
OTI	142 (95–222)	113 (62–178)	154 (105–233)	<0.001				
OTP	215 (160–291)	190 (135–260)	225 (168–305)	<0.001				
OTR	289 (215–365)	250 (181–328)	297 (224–371)	<0.001				
Time metrics from arrival								
ATI	43 (24–61)	21 (15–35)	49 (35–66)	<0.001				
ATP	106 (84–133)	89 (63–127)	110 (91–135)	<0.001				
ATR	164 (127–213)	135 (100–187)	169 (135–217)	<0.001				
Time metrics from decision imaging								
ITP	61 (43–84)	65 (42–94)	60 (43–81)	0.014				
ITR	119 (85–165)	113 (79–155)	121 (86–171)	0.234				

Table 2. Comparisons of Workflow Time Metrics Between the CTA and MRI Groups in Patients With 6 Hours of OTA Time

Values are presented as median minutes (IQRs). *P* value for the comparison between the CTA and MRI groups. ATI indicates time from arrival to decision imaging; ATP, time from arrival to puncture; ATR, time from arrival to reperfusion; CTA, computed tomography angiography; IQRs, interquartile ranges; ITP, time from decision imaging to puncture; ITR, time from decision imaging to reperfusion; MRI, magnetic resonance imaging; OTA, time from onset to arrival; OTI, time from onset to decision imaging; OTP, time from onset to puncture; and OTR, time from onset to reperfusion. MRA takes 20-30 min Ionger than CTA

CTA also better for:

- Distal branch
 occlusions
- Near occlusions
- Intraluminal
 thrombus

Alberta Stroke Program Early CT Score (ASPECTS)

- Quantitative score assessing early infarct signs in 10 brain regions
- 10 = normal
- 0 = large hemispheric infarction

ASPECTS: Despite name, can score MRI as well

Selection for thrombectomy using ASPECTS to estimate infarct core

- HERMES meta-analysis
 of patient level data
- Included patients with vessel imaging
- 1764 patients with LVO randomized, 7 trials
 - MR CLEAN
 - EXTEND-IA
 - ESCAPE
 - SWIFT PRIME
 - REVASCAT
 - PISTE
 - THRACE

Baseline characteristics

	Endovascular thrombectomy group (n=871)	Control group (n=893)
Age, years	67-4 (57-0-76-0)	67.8 (58.0–76.0)
Sex		
Female	412 (47%)	421/891 (47%)
Male	459/871 (53%)	470/891 (53%)
NIHSS	17 (14–20)	17 (13–21)
Onset to randomisation, min	181 (141–241)	184 (140–250)
Intravenous alteplase	763/871 (88%)	809/893 (91%)
ASPECTS	8 (7-9)	8 (7-9)
Clot burden score	4 (3-6)	4 (3-6)
>33% involvement of middle cerebral artery territory	114/860 (13%)	119/876 (14%)
Hyperdense vessel sign	356/687 (52%)	330/701 (47%)
Thrombus location		
Internal carotid artery	215/818 (26%)	227/828 (27%)
Proximal M1 segment of middle cerebral artery	315/818 (39%)	327/828 (39%)
Distal M1 segment of middle cerebral artery	221/818 (27%)	210/828 (25%)
M2 segment of middle cerebral artery	67/818 (8%)	64/828 (8%)
Collateral circulation grade		
0	6/639 (1%)	8/651 (1%)
1	91/639 (14%)	108/651 (17%)
2	283/639 (44%)	275/651 (42%)
3	259/639 (41%)	260/651 (40%)
Data are median (IQR), n (%), and Stroke Scale. ASPECTS=Alberta St	n/N (%). NIHSS=Nation roke Program Early CT !	nal Institutes of Health Score.

Selection for thrombectomy using ASPECTS

- Outcome improved with MT across a broad range of baseline characteristics
- Benefit similar across ASPECTS categories
- BUT....beware how
 ASPECTS determined –
 i.e. MR vs. CT
- Most ASPECTS 0-4 in this analysis used MRI!

	Endovascular thrombectomy	Control		Adjusted cOR (95% CI)	Pinteraction
Collateral grade 3	258	257	- _	2·36 (1·72–3·24)	J
Collateral grade 2	282	270	●	2.08 (1.53-2.83)	> 0.296
Collateral grade 0–1	96	115 -	↓ • · · · · ·	1·49 (0·86–2·55)	J
M2	67	63 -	• • • • • • • • • • • • • • • • • • •	1.68 (0.90–3.14)	J
Distal M1	220	208	↓	1.57 (0.93–2.66)	
Proximal M1	313	318	●	1.95 (1.46–2.59)	> 0.316
Internal carotid artery	214	226	→	2·68 (1·88–3·82)	J
Clot burden score 8–10	69	66 -	• • • • • • • • • • • • • • • • • • •	1.60 (0.86–2.98)	J
Clot burden score 5–7	234	239	•	1.65 (1.08–2.53)	> 0.05
Clot burden score 0–4	511	511	_ _	2·30 (1·83–2·89)	J
Hyperdense sign yes	354	328	●	2.77 (2.09–3.67)	1
Hyperdense sign no	330	362	●	1.69 (1.29–2.21)	\$ 0.01
>33% MCA involvement yes	113	116	 ●	1.70 (1.04–2.78)]
>33% MCA involvement no	743	744	_ _	2.07 (1.72–2.49)	\$ 0.26
ASPECTS 8–10	478	497	_ →	2.36 (1.88-2.98)]
ASPECTS 5–7	321	296	│ ●	1.58 (1.19–2.11)	> 0.05
ASPECTS 0–4	57	69	• · · · · · · · · · · · · · · · · · · ·	2.15 (1.06-4.37)	J
Overall	866	877	_ →	2.00 (1.69-2.38)	

Figure 1: Forest plot of endovascular treatment effect on primary outcome (modified Rankin Scale shift at 90 days), by baseline imaging variable categories

cOR=common odds ratio. M1=M1 segment of MCA. M2=M2 segment of MCA. MCA=middle cerebral artery. ASPECTS=Alberta Stroke Program Early CT Score.

Mechanical thrombectomy – selection based on core using CTP or DWI MR

- HERMES meta-analysis
 of patient level data
- Included patients with penumbral imaging data (CTP or MRI DWI)
- 900 patients, 7 trials
 - MR CLEAN
 - EXTEND-IA
 - ESCAPE
 - SWIFT PRIME
 - REVASCAT
 - PISTE
 - THRACE

	CT perfusion		Diffusion MRI	All participants (n=1764)	
	Endovascular thrombectomy group (n=289)	Standard therapy group (n=302)	Endovascular thrombectomy group (n=153)	Standard therapy group (n=156)	
Age, years	65·5 (13·7)	65.7 (13.0)	63·1 (13·1)	63.6 (14.0)	65.6 (13.5)
Sex					
Men	137 (47%)	168 (56%)	94 (61%)	73 (47%)	929 (53%)
Women	152 (53%)	134 (44%)	<mark>5</mark> 9 (39%)	83 (53%)	835 (47%)
NIHSS	17 (14–20)	17 (13–21)	18 (14–21)	17 (14–21)	17 (13–21)
ASPECTS	8 (7–9)	8 (7-9)	7 (6–8)	7 (5-8)	8 (7-9)
Site of arterial occlusion					
Internal carotid artery	79 (27%)	78 (26%)	25 (16%)	33 (21%)	442 (25%)
M1	171 (59%)	189 (63%)	112 (73%)	101 (65%)	1073 (61%)
M2	28 (10%)	24 (8%)	5 (3%)	8 (5%)	131 (7%)
Unknown	11 (4%)	11 (4%)	11 (7%)	14 (9%)	116 (7%)
Onset to emergency department, min	110 (57–183)	110 (54–197)	105 (75–139)	110 (80–159)	105 (60–180)
Emergency department to arterial access, min	103 (75–150)	NA	107 (85–140)	NA	115 (80–165)
Intravenous alteplase	248 (86%)	269 (89%)	145 (95%)	154 (99%)	1572 (89%)
Baseline ischaemic core volume, mL	10 (3–30)	9 (2·5–24)	18 (9–41)	23 (12–63)	NA
Baseline critical hypoperfusion volume, mL	122 (79-165)	123 (82-167)	NA	NA	NA

Baseline characteristics

Data are mean (SD), median (IQR), or n (%). NIHSS is a standardised neurological examination for which the score ranges from normal (0) to death (42). ASPECTS reflects the extent of early ischaemic change on the CT brain: 10 is normal, 0 shows involvement of the entire middle cerebral artery territory. ASPECTS=Alberta Stroke Program Early CT Score. M1=first segment of middle cerebral artery (pre-bifurcation). M2=second segment of middle cerebral artery (from bifurcation to the circular sulcus of the insula in the Sylvian fissure). NA=not applicable. NIHSS=National Institutes of Health Stroke Scale.

Table 1: Baseline clinical and imaging characteristics of patients receiving endovascular thrombectomy or standard medical therapy

MT beneficial over broad range of core volumes

- Prognosis relative to core volume worse in patients assessed with CT vs. MRI
- CT probably underestimates "true core"
- MRI may overestimate "true core"

Late time window patients: DEFUSE 3

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging

G.W. Albers, M.P. Marks, S. Kemp, S. Christensen, J.P. Tsai, S. Ortega-Gutierrez, R.A. McTaggart, M.T. Torbey, M. Kim-Tenser, T. Leslie-Mazwi, A. Sarraj, S.E. Kasner, S.A. Ansari, S.D. Yeatts, S. Hamilton, M. Mlynash, J.J. Heit,
G. Zaharchuk, S. Kim, J. Carrozzella, Y.Y. Palesch, A.M. Demchuk, R. Bammer,
P.W. Lavori, J.P. Broderick, and M.G. Lansberg, for the DEFUSE 3 Investigators*

- 6-16 hours since LKN
- ICA or MCA occlusion
- Core < 70 ml
- Perfusion defect (Tm>6s):core ratio 1.8 using RAPID CT or MRI

DEFUSE 3: Primary outcome

DEFUSE 3: Treatment effect similar in patients selected with CT vs. MR

Treatment effect similar in patients selected with CT vs. MR

	No. of	Endovascular	Medical	Risk Rati	o for Functional Indep	endence	P Value f
Subgroup	Patients	Therapy	Therapy		at Day 90 (95% CI)		Interactio
Overall	182	45	17	-	2.6	7 (1.60-4.48)	
Time from stroke onset to randomization	102		17				0.21
<9 hr	50	40	28		1.4	3 (0.65-3.15)	0.22
9–12 hr	72	50	17		3.0	0 (1.35-6.68)	
>12 hr	60	42	7		6.0	8 (1.64-69.93))
Volume of ischemic core						(2101 05150)	, 0.47
<10.0 ml	92	42	20	_	2.0	4 (1.04-3.99)	
10.0-25.0 ml	44	55	13		4.4	0 (1.41-20.33)
>25.0 ml	46	42	14			6 (1.01-13.53)	,)
Baseline NIHSS score						(, 0.20
<13	55	69	46		1.4	9 (0.92-2.42)	0.20
13-18	55	48	12		41	8 (1 36-29 67)
>18	72	21	0				,
Age	12	21	0				1.00
<70 yr	84	59	28		21	5 (1 23-3 76)	1.00
>70 yr	98	31	8		2.0	1 (1 36-15 46	
ASPECTS	20	51	0		5.5	1 (2.50-15.40	0.65
-8	57	32	7			6 (1 14-44 44	0.05
~ 8	85	16	24		4.0	8 (0 99_3 60)	,
Site of occlusion	03	40	24		1.0	(0.55-5.00)	0.69
Middle cerebral artery	113	48	21		23	3 (1 29_4 10)	0.09
Internel essetial artery	115	40	21		2.3	0 (1 20 20 67	`
Pasalina imaging method	00	20	0		4.5	0 (1.39-29.07	0.41
CT	122	20	16		2 5	0 (1 22 4 75)	0.41
MDL	133	39	10		2	7(1.32-4.73)	
NIRI Determination of time of stroke	49	01	19		5.1	/ (1.35-7.43)	0.87
Time that patient was last known to be well	116	38	13		2.9	6 (1.38–6.36)	0.07
Exact time of symptom onset	66	58	23		2 5	4 (1 29-5 01)	
Sev			20			. ()	0.71
Female	92	35	13		2.6	7 (1 15-6 21)	0.72
Male	90	54	20		2.6	6 (1.41-5.04)	
Race	20	34	20	1	2.0	(21.12 0.04)	0.58
White	158	46	16	-	2.5	4 (1.64-4.93)	0.58
Other or unknown	24	36	20		- 15	9 (0 42-11 38)
Ethnic group	47	50	20	-	1.7	- (5.12 11.50	, 0.61
Hispanic	24	57	10			1 (1 11-158 7	3)
Non-Hispanic	157	43	18		3./	5 (1 43-4 21)	~1
Atrial fibrillation	131	43	10	1	2.4	······································	0.21
Vac	62	3.8	4		10.7	1 (1 91_294 1	0.21
No	120	18			2 10.7	A (1 26_3 6A)	±1
Eligible for DAWN trial	120	40	23		2.1	- (1.20-3.04)	0.04
	112	2.9	13		2 (0 (1 39_6 40)	0.96
No	70	56	24		5.0	6 (1 20 4 62)	
NU	70	20	01	10	2.3	(1.20-4.03)	
			Medica	I Therapy Endovas	scular Therapy		

Guidelines get the last word...

2.2. Brain Imaging	COR	LOE	New, Revised, or Unchanged
1. All patients admitted to hospital with suspected acute stroke should receive brain imaging evaluation on arrival to hospital. In most cases, noncontrast CT (NCCT) will provide the necessary information to make decisions about acute management.	I	B-NR	Recommendation revised from 2013 AIS Guidelines.
Diagnostic testing is most cost-effective when it leads to a change in treatment a change in treatment. Although diffusion-weighted magnetic resonance imagin CT for detecting AIS, ^{66,67} routine use in all patients with AIS is not cost-effective. ⁶ with acute stroke has been shown to be cost-effective primarily because of the avoidance of antithrombotic treatment in these patients. ⁷⁰ In many patients, the made accurately on the basis of the clinical presentation and either a negative N changes, which can be detected in the majority of patients with careful attentior NCCT such as those with puzzling clinical presentations or those with uncertain carotid endarterectomy (CEA) or stenting, demonstration of an area of restricted change in treatment that improves outcomes. There are inadequate data at this benefit from DW-MRI, and more research is needed to determine criteria for	See Table XV in online Data Supplement 1.		

