Application of Transcranial Doppler Ultrasound in Spontaneous Pediatric Subarachnoid Hemorrhage

Darryl Miles , MD Assistant Professor, Department of Pediatrics Division of Critical Care UT Southwestern Medical Center – Children's Medical Center Dallas

Karen Lidsky MD Associate Professor, University of Florida Jax Division of Pediatric Critical Care Wolfson Children's Hospital , Jacksonville Fla

DISCLOSURES

No Disclosures

Objectives

- Discuss mechanisms of action in SAH induced vasospasm
- Describe the role of TCD in the management of pediatric SAH vasospasm
- Present a clinical case of subarachnoid hemorrhage due to ruptured AV fistula complicated by cerebral artery vasospasm
- Correlation TCD findings with conventional neurovascular imaging such as cerebral angiography and CT angiography
- Present case report pediatric use of intra-arterial milrinone therapy for acute vasospasm management

Background

- Causes spontaneous SAH
 - Arteriovenous malformation (AVM):
 - Rarity: 3% of all AVMs but extremely high rupture rate
 - Most frequent abnormality ; most common cause spontaneous hemorrhage
 - Headaches, seizures, hemorrhage
 - Aneurysm
 - Gain rare: < 2% aneurysms; extremely rare under 5yrs; predominate teens
 - Males to females: 1.8 :1 : suggests differences in pathogenesis
 - Occurrence in the ICA bifurcation in 25%; giant size and posterior circulation 17%

VUARY 24-26, 2019 O PUERTO RICO

- Infectious etiology
- Miscellaneous
 - Trauma
 - Infection
 - Tumor

Vasospasm: Mechanism of Action

- Vasospasm: "reversible reduction caliber of the lumen of conducting artery in the subarachnoid space
- Cerebral vasospasm leading determinate delayed cerebral ischemia (DCI)

26. 2019 OPUERTO RICO

- Mechanism of action
 - Endothelial damage
 - Smooth muscle contraction
 - Change in vascular responsiveness
 - Inflammatory process

Vasospasm: Mechanism of Action

- Nitric Oxide (NO)
 - NO released from endothelium----stimulates guanylate cyclase in vascular smooth muscle ---- increase intracellular cGMP ----- muscle relaxation
 - Reduction neuronal nitric oxide synthase
 - Dysfunction of endothelial NO synthase
 - Hemoglobin scavenging of NO
- Inflammatory Mediators
 - Endothelin -1 (ET-1)
 - IL-1, TNFα

ASN 42ND ANNUAL MEETING O PUERTO RICO

Vasospasm : Mechanism of Action

- ET-1:
 - Produced cerebral endothelium and mediates effect via Endothelin A receptors vascular smooth muscle
 - Increased intracellular calcium concentrations
- IL -1: G-protein coupled receptors

Vasospasm: Mechanism of Action

Mediator	Function of mediator		
(i) Nitric oxide	 (i) Vasodilator (ii) Inhibitor of endothelin-1 expression 		
(i) Endothelin-1	(i) Vasoconstrictor		
 (i) Interleukin-1 (ii) Interferon gamma (iii) Tumor necrosis factor 	 (i) Activators of protein kinase C (ii) Stimulators of release of endothelin-1 		

ASN 42ND ANNUAL MEETING JANUARY 24-26, 2019 **PUERTO RICO**

.

- Angiography assesses arteries > 1mm; small vessel contribution undetected
- Lindegaard defined cerebral blood flow velocities for cerebral vasospasm
 - Inverse relation between angiography determined vessel size and cerebral blood flow velocity

24-26, 2019 O PUERTO RICO

- Adult criteria:
 - Mean MCA velocity > 120cm/s plus Lindegaard ratio ≥ 3
 - Mean BA velocity >90 cm/s
 - Concerning DCI: increase ≥ 50cm/s/day or increase > 65cm/s/day 3-7
 - Systematic review : 99% sensitivity, 67% specificity VSP ≥ 25%
- WHAT ABOUT PEDIATRICS?

- Pediatric flow velocities elevated baseline compared to adultsoverestimate VSM using adult criteria
- Pediatric definition
 - Mean MCA or BA flow velocity ≥ 2 SD above normal values based on sex and age

- Lindegaard ratio remains the same
- Consideration impact critical illness, sedation, mechanical ventilation has on velocities
 - Obrien(2015): MCA flow velocities lower

ASN 42ND ANNUAL MEETING O PUERTO RICO

TCD	01/23/2017	01/24/2017	01/25/2017	01/26/201 7	01/27/201 7	01/28/201 7
RMCA	111 cm/s	126 cm/s	143 cm/s	181 cm/s	164 cm/s	127 cm/s
RACA	78.9 cm/s	60 cuya	81.6 cm/s	-	essen/s	99 cm/s
RICA	88.6 cm/s	92 cm/s	110 cm/s	132 cm/s	135 cm/s	111 cm/s
RPCA	72 cm/s	76.2 cm/s	103 cm/s	105 cm/s	104 cm/s	90 cm/s
RVA	53.9 cm/s	78.5 cm/s	110 cm/s	91.2 cm/s	91 cm/s	62 cm/s
LMCA	97.4 cm/s	141 cm/s	153 cm/s	180 cm/s	155 cm/s	125 cm/s
LACA	58.1 cm/s	80.5 cm/s	91.6 cm/s		oo.a emys	71 cm/s
LICA	86.6 cm/s	105 cm/s	99.7 cm/s	109 cm/s	111 cm/s	105 cm/s
LPCA	55.4 cm/s	58.1 cm/s	94.7 cm/s	100 cm/s	104 cm/s	82 cm/s
LVA	35.4 cm/s	74.3 cm/s	87.8 cm/s	84.3 cm/s	83.5 cm/s	61 cm/s
Basilar	54.7 cm/s	83.5 cm/s	107 cm/s	100 mc/s	97.8 cm/s	79 cm/s
TCD	01/29/2017	01/30/2017	01/31/2017	02/01/201 7	02/02/201 7	
RMCA	131 cm/s	131 cm/s	130 cm/s	130 cm/s	129 cm/s	
RACA	71 cm/s	72.4 cm/s	70.8 cm/s	82.4 cm/s	89.7 cm/s	
R ICA	92 cm/s	91.6 cm/s	97.8 cm/s	99.3 cm/s	103 cm/s	
RPCA	78 cm/s	77.8 cm/s	97.8 cm/s	95.9 cm/s	93.2 cm/s	
t VA	74 cm/s	73.5 cm/s	79.3 cm/s	79.3 cm/s	67 cm/s	
MCA	119 cm/s	119 cm/s	142 cm/s	135 cm/s	117 cm/s	
ACA	69 cm/s	77 cm/s	91.2 cm/s	84.7 cm/s	80.8 cm/s	
ICA	99 cm/s	98.6 cm/s	104 cm/s	104 cm/s	105 cm/s	
.PCA	85 cm/s	84.7 cm/s	96.3 cm/s	94.7 cm/s	94.7 cm/s	
VA	78 cm/s	72.8 cm/s	63.1 cm/s	85.1 cm/s	68.5 cm/s	
lasilar	99 cm/s	98.6 cm/s	92 cm/s	87.4 cm/s	76.6 cm/s	

Age Norm: MCA 94(SD 10)

Clinical Case

- 8 year old previously healthy girl presented with acute onset of headache, altered mental status and respiratory failure
- Intubated for neurogenic pulmonary edema, started on epinephrine infusion for LV dysfunction (2 min CPR)
- Head CT diffuse edema, extensive SAH and IVH
- CTA complex AV fistula malformation arising from a ectatic left vertebral artery

Initial CT Head

ASN 42ND ANNUAL MEETING O PUERTO RICO

Complex AV fistula vascular malformation with multiple intranidal aneurysms (up to 8mm) with superficial and deep venous drainage

ASN 42ND ANNUAL MEETING O PUERTO RICO

Initial CT Angiogram and TCD

Age based mean TCD values MCA 97 cm/s (9), ACA 65 (13) Bode H et al, Arch Dis Child 63:606-611, 1988

Normal anterior circulation

Clinical Case - Initial Management

- EVD placed, treated for increased intracranial pressure, optimization of systemic cardiac output and cerebral perfusion pressure
- Recovered quickly by HD#2 following commands, writing on notepad with clinical improved LV function
- HD #2 interventional radiology for embolization of AV fistula malformation
- Complicated by systemic hypertension, recurrent fistula hemorrhage and worsening neurologic exam and intracranial hypertension
- Continued poor neurologic exam HD # 5 TCD performed by request of medical team consistent with anterior circulation cerebral vasospasm, CTA ordered

24-26, 2019 OPUERTO RICO

HD #5 - Correlation of CT angiogram with TCD

Clinical Case – Vasospasm Management

- Concern for developing ischemic changes in right frontal lobe basal ganglia and parietal convexities
- Induced systemic hypertension- systolic goal of 140-160 mm Hg, peripheral milrinone infusion
- HD #7 continued poor neurologic exam cerebral angiogram with intra-arterial therapy

26, 2019 OPUERTO RIC

HD #7 - Intra-arterial Milrinone Injection and Correlation of Cerebral Angiography with TCD

10.1

9.5

1.5 mg milrinone into R distal ICA and 0.5 mg milrinone into L distal ICA

Clinical Case – Continued ICU Course

26, 2019 O PUERTO RICO

- 24 hours after IA therapy developed new right basal ganglia hemorrhage and increased ICP
- Left EVD placed
- Pentobarbitol coma for 7 days for refractory intracranial hypertension
- BP goal reduced to systolic 110-130 mmHg

HD #8 – Improving R MCA Vasospasm and New Acute R IVH and Basal Ganglia Parenchymal Hemorrhage

72-96 hrs Post Intra-arterial Milrinone TCD Resolution of R MCA and ACA Vasospasm

Clinical Case – Outcome

- Continued on IV milrinone infusion with BP goal 100-130 mmHg
- Sonographic evidence of vasospasm in left MCA and ACA resolved by HD #25
- Required tracheostomy, gastrostomy tube, VP shunt and baclofen pump

26. 2019 OPUERTO RI

- Discharged to inpatient rehabilitation
- AV fistula embolization successful with no recurrence

Summary and Conclusions

- Children are at risk for cerebral vasospasm after SAH due to spontaneous rupture of vascular malformations
- TCD can be a valuable tool in pediatric management of SAH
 - non-invasive assessment for cerebral artery vasospasm
 - guide clinical management decisions
 - monitoring response to IA therapy and vasospasm resolution
- Increased TCD velocities for age and a Lindegaard ratio > 4 demonstrated an excellent agreement with conventional gold standards of vasospasm assessment such as CT angiography and cerebral angiography

ASN 42ND ANNUAL MEETING O PUERTO RICO

Summary and Conclusions

- Threshold TCD velocities (age based) and Lindegaard ratios need further validation in pediatric vasospasm with conventional imaging modalities
- Intra-arterial milrinone may be a therapeutic option for pediatric vasospasm management but warrants future study
- Children with spontaneous SAH due to vascular malformation rupture should receive serial TCDs for vasospasm monitoring to prevent delayed ischemic injury