

Functional Imaging in Cognitive Disorders: A Research Case

Joseph C. Masdeu, MD, PhD

Graham Family Distinguished Chair in Neurological Sciences Houston Methodist Institute for Academic Medicine

Professor of Neurology, Weill Cornell Medical College

Semantic Dementia

- Semantic variant primary progressive aphasia
- Progressive naming and comprehension impairment
- Asymmetric atrophy of the temporal poles, L>R

Inverse Correlation of [¹⁸F]AV-1451 with Metabolism

Increased [¹⁸F]AV-1451 (flortaucipir) Decreased metabolism

Semantic Dementia

Tau PET [¹⁸F]AV-1451

FDG PET Metabolism

Only About 20% of Semantic Dementia Cases Have Tau

Most Have TDP-43 Pathology

Josephs KA et al. 2011; Acta Neuropathol 122:137

The Flortaucipir Semantic Dementia Paradox

- Even though the majority of semantic dementia cases are not associated with tau deposition
 - But with TDP-43 aggregates
- Flortaucipir consistently shows increased uptake, particularly in temporal poles
- But flortaucipir is supposed to bind to tau, not to TDP-43

» Lin YG et al. HAI 2015

Could Regional Inflammation Explain This Paradox?

- Semantic dementia is associated with inflammation
 - Semantic dementia patients are more likely to have autoimmune diseases and have increased levels of TNF-alpha in blood

» Miller ZA et al. J Neurol Neurosurg Psychiatry 2013;84:956

- Immune-related risk genes are enriched in SD

» Broce I et al. PLoS Med 2018, doi: 10.1371/journal.pmed.1002487

Regional brain inflammation is associated with increased MAO B

» Meulendyke KA et al. J Infect Dis 2014:210:904

Possibly causing non-specific flortaucipir binding

Objective:

To determine whether in semantic dementia (SD) there is an association between

- ¹⁸F AV-1451 uptake and
- inflammation, measured with the TSPO tracer ¹¹C PBR28

> TSPO is overexpressed in activated microglia

so that inflammation could explain the ¹⁸F AV-1451 uptake in SD

Hypothesis:

The flortaucipir (¹⁸F AV-1451) signal in semantic dementia reflects regional inflammation, rather than tau levels

We performed ¹⁸F AV-1451 tau PET and ¹¹C PBR28 PET in patients with Semantic Dementia (SD) and healthy controls (HC)

	SD	HC for ¹⁸ F AV-1451	HC for ¹¹ C PBR28
Ν	6	8	10
Women / Men	4 / 2	4 / 4	6 / 4
Age	69 ± 8.5	69 ± 7.4	68.2 ± 4.9
MMSE	21.2 ± 8.5	29.5 ± 1.1	29.5 ± 0.8
¹¹ C PIB / ¹⁸ F Florbetapir	Negative	N/A	N/A
TSPO High-Affinity binders*	6/6	N/A	4/10
TSPO Mixed-Affinity Binders*	0/6	N/A	6/10

*Determined by TSPO Ala147Thr (rs6971) polymorphism genotyping

Naming and single word comprehension were most affected in Semantic Dementia, suggesting maximal involvement of the anterior portion of the left temporal lobe

Cortical Thickness on fsaverage surface

PET Imaging Processing

- ¹⁸F-AV1451 scans were quantified with the ratio over the cerebellum (SUVR from 80 to 100 minutes).
- ¹¹C-PBR28 scans lasted 90 minutes, and were quantified with the Logan model and a metabolite-corrected arterial input function (V_T) after drawing 24 blood samples per subject from a catheter in the radial artery.
- Scans were analyzed with and without Partial Volume Correction with the Geometric Transfer Matrix Algorithm
- 56 Brain regions were defined with the Hammers' atlas, 28 for each hemisphere

Group Analysis ¹⁸F AV1451 and ¹¹C PBR28 uptake in Semantic Dementia

Regions where SD > HC SUVR or V_T – Mann Whitney U

Regions where SD > HC SUVR or V_T – Mann Whitney U

- None found for semantic dementia
 - Neuropathology
 - Imaging
- To the right, ¹¹C (*R*)-PK11195 PET of a 69-year-old with frontotemporal lobar degeneration

Cagnin A et al. Ann Neurol 2004;56:894-897

Inflammation Seems Greatest at the Periphery of the Core of Pathologic Damage

Conclusions

- ¹⁸F-AV-1451 and ¹¹C-PBR28 were increased in similar regions,
 - but their distribution in these regions differed for either tracer
- Therefore, inflammation **does not** explain the ¹⁸F AV-1451 signal
- Our findings leave the door open for neurobiological processes other than inflammation to explain the increased ¹⁸F-AV-1451 SUVR values in anterior temporal regions in semantic dementia
 - Likely, binding to some configurations of TDP-43 aggregates, as already suggested

» Makaretz SJ, et al. J Neurol Neurosurg Psychiatry 2018 Oct;89:1024-1031

» Bevan-Jones WR, et al. J Neurol Neurosurg Psychiatry 2018 Oct;89:1032-1037

Semantic Dementia: TDP-43 Type C

The more dense and numerous TDP-43 aggregates in semantic dementia may explain flortaucipir binding in semantic dementia

The Nantz National Alzheimer Center: A Team Effort

CLOSE COLLABORATORS Drs. Gavin Britz and Robert Rostomily

Christof Karmonik - Director, MRI Core

Max Yu – Director, Cyclotron Core

Acknowledgements

- Eli Lilly for ¹⁸F-AV1451 precursor
- ADNI for the healthy older controls' MRIs used for the functional connectivity analysis
- The Nantz and Mary Naylor Methodist Foundation Funds for financial support

Paolo Zanotti-Fregonara – Director, PET Core

HMNI-HMRI Neuroimaging Lab

