Transcranial Doppler Non-Imaging Technique

Brenda Rinsky, RDMS, RVT, NVS

Assistant Manager, Stroke Program

Technical Director, Neurovascular Ultrasound Laboratory

Dept. of Neurology

Cedars-Sinai Medical Center

Vessel Identification

No Visual Map - Audio

- 1. Find the best window (signal intensity and pitch)
- 2. Follow the anatomical landmarks and adjust depths for age and head size: Infant, Child, Adult
- 3. Determine Flow Direction
- 4. Spatial relationship with other vessels:
 Anterior to Posterior circulation
 Develop a mental 3-D image

Acoustic Approaches

Navigating through the Circle of Willis

Velocity

All Peaks Velocities are Averaged Within A Single Cardiac Cycle

Time -Averaged Mean Velocities (TAMV)

"Envelope Fit"

Vessel Velocity Hierarchy

Anterior Circulation:

- MCA
- ACA
- PCA

Posterior Circulation:

- Basilar
- Vertebral

Normal Values

Artery	Window	Depth (mm)	Direction	Mean Flow Velocity
MCA	Temporal	30 to 60	Toward probe	55 ± 12 cm/s
ACA	Temporal	60 to 85	Away	50 ± 11 cm/s
PCA	Temporal	60 to 70	Bidirectional	40 ± 10 cm/s
TICA	Temporal	55 to 65	Toward	39 ± 09 cm/s
ICA (siphon)	Orbital	60 to 80	Bidirectional	45 ± 15 cm/s
OA	Orbital	40 to 60	Toward	20 ± 10 cm/s
VA	Occipital	60 to 80	Away	38 ± 10 cm/s
BA	Occipital	80 to 110	Away	41 ± 10 cm/s

TCD, transcranial Doppler; MCA, middle cerebral artery; ACA, anterior cerebral artery; PCA, posterior cerebral artery; TICA, terminal internal carotid artery; ICA, internal carotid artery; OA, ophthalmic artery; VR, vertebral artery; BA, basilar artery.

CSMC Neurovascular Ultrasound Laboratory

Reference:: R. Aaslid

Pulsatility Index Calculation Vessel Flow Resistance

PI= <u>PSV - EDV</u> Mean Velocity

Below Normal = < .6

Normal = .6 to 1.1

Above Normal = 1.2 to 1.5

Abnormal = > 1.5

Visual Measure of Resistance

Normal Resistance:

End Diastole Reaches to ½ of The Total Height of The Waveform

Visual Measure of Resistance

High Resistance:

End Diastole Reaches Only 1/3 of The Total Height of The Waveform

Visual Measure of Resistance

Low Resistance:

End Diastole Reaches Up To 2/3 The Total Height of The Waveform

Normal Waveform

How To Identify:

- 1. Normal velocity
- 2. Normal P.I.
- 3. Straight Upstroke

The Importance of Angle: Highest Pitch = Highest Velocity

Transducer Technique

3 Ways to Improve the Doppler Signal:

- 1. Angulation: Tipping the probe on its edge
- 2. Push- Pull: Pushing or pulling against the skin without an angle change
- 3. Sliding: Sliding the probe over the skin to a different location

Transducer Technique: Overhand

General all-purpose hand-hold

Transducer Technique: Underhand

Transforamenal Approach

Transducer Technique: Backhand

Where Do I Begin? The Transtemporal Approach

- Above the Zygomatic
 Arch
- Behind the Orbital Ridge

Anterior Circulation

The Temporal Window

CSMC Neurovascular Laboratory

- Anterior
- Middle
- Posterior
- Frontal

How do I Angle the Transducer? -MCA-

- > Temporal Bone
- > Angle Superiorly
- ➤ Depth: 40-65mm
- > Flow Direction: Toward

MCA (40-60mm) Angle: Superior and Anterior

MCA/ACA Bifurcation (60-70mm)

TICA (Terminal ICA)

Find the Bifurcation - Then Angle Toward the Feet

How Do I Angle the Transducer? -ACA-

- > Temporal Bone
- >Angle Anteriorly
- ➤ Depth: 60-75mm
- >Flow Direction: Away

ACA (60-75mm) Angle: Anterior

ACoM (75-80mm)

How Do I Angle the Transducer? -PCA-

- > Temporal Bone
- > Angle Posterior and Inferior
- ➤ Depth: <u>55-79mm</u>
- > Flow Direction: Toward

PCA (55-75mm) Angle: Posterior and Inferior

Top of Basilar (STOP Protocol) Locate the P1, then increase the depth to midline

How Do I Angle the Transducer? Extracranial ICA (ICAec)

- ➤ Under the Ramus of the mandible (submandibular)
- > Angle Superior and Medial
- **▶** Depth: 50mm
- > Flow Direction: Away

ICAec (50mm) Angle: Superior and Medial

ECA- High Resistance

Ophthalmic and Siphon

- **Power to ≤ 10\%**
- Close the eyelid and use light pressure!
- ➤ <u>Should Not Scan</u>: prosthetic eye, recent eye surgery, hard contact lenses
- Siphon: Sliding lateral toward the outer edge of eyelid
- ➤ The Contralateral ACA: 80mm- Medial Superior angle

How Do I Angle the Transducer? Transorbital

Ophthalmic Artery-

> Angle: Medial and Inferior

> Depth: 50mm

> Flow Direction: Toward

Siphon-

> Angle: Medial – angle varies

Depth: 60-70mm

> Flow Direction: Away or Toward

Ophthalmic Artery (50mm) Angle: Inferior and Medial

Siphon (60-70mm)

How Do I Angle the Transducer? -Subforamenal/ Vertebrobasilar

- Vertebral: 50-80mm
 - Direction: Away
 - Place probe under Mastoid
 - Flat, medial angle: Shallow
 - Superior, Medial: Deep
- Basilar: 80-110mm
 - Direction: Away
 - Move Probe toward the foramen
 - Push and scoop wrist motion

Posterior Circulation

Vertebral Artery (60-80mm) Angle: Superior and Medial

Basilar Artery (85-115mm) Angle: Superior- Can Be Tortuous

M-Mode

- 1. Bands of color (red & blue): representing flow direction across the Anterior or Posterior circulations
- 2. Easier to comprehend: Provides an overview of where the flow can be found: and what depth
- 3. M-mode does not:
 - -represent velocity or pulsatility
 - -describe a disease process
 - -provide a thorough/complete TCD examination
- 4. M-Mode represents reflected power (intensit

Red, Blue, Red, Blue Signature M-Mode Presentation of the Anterior

MCA vs. PCA

Top of Basilar (TOB) at
Bifur. –
"BLACK"

Deeper than Bifur. is the Contralateral P1 PCA – "BLUE"

PCA- Light Reactivity

Advantage of Dual Monitoring: Identifies Asymmetry, Emboli and Bubbles

Technical Difficulties

- 80% of the Population: Incomplete Circle of Willis
- 5-10% of the Population have acoustically insufficient Temporal windows due to increased bone density
- Missing or Hypoplastic vessels: ACA, P1 PCA, ACoM
- Persistent Fetal Circulation: Change in PCA normal flow direction
 * Best identified with imaging
- "Narrow" windows, or finding the "best" window

Thank You for Your Kind Attention!